Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: A View from the Surface

نویسندگان

  • Meng Cheng
  • Michael Zaletel
  • Maissam Barkeshli
  • Ashvin Vishwanath
  • Parsa Bonderson
چکیده

The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a “spinon” excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of “anyonic spin-orbit coupling,” which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by onsite symmetry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Realization and Numerical Studies of a Three-Dimensional Bosonic Topological Insulator and Symmetry-Enriched Topological Phases

We study a topological phase of interacting bosons in (3þ 1) dimensions that is protected by charge conservation and time-reversal symmetry. We present an explicit lattice model that realizes this phase and that can be studied in sign-free Monte Carlo simulations. The idea behind our model is to bind bosons to topological defects called hedgehogs. We determine the phase diagram of the model and...

متن کامل

Bosonic topological crystalline insulators and anomalous symmetry fractionalization via the flux-fusion anomaly test

We introduce a method, dubbed the flux-fusion anomaly test, to detect certain anomalous symmetry fractionalization patterns in two-dimensional symmetry enriched topological (SET) phases. We focus on bosonic systems with Z2 topological order, and symmetry group of the form G = U(1)oG′, where G′ is an arbitrary group that may include spatial symmetries and/or time reversal. The anomalous fraction...

متن کامل

Symmetry Protected Topological phases of Quantum Matter

We describe recent progress in our understanding of the interplay between interactions, symmetry, and topology in states of quantum matter. We focus on a minimal generalization of the celebrated topological band insulators to interacting many particle systems, known as Symmetry Protected Topological (SPT) phases. In common with the topological band insulators these states have a bulk gap and no...

متن کامل

Topology, Crystallized (Experiments): P. Dziawa et al., arXiv:1206.1705; S.-Y. Xu et al., arXiv:1206.2088

A key difference between quantum Hall phases induced by a magnetic field and topological insulator phases induced by spin-orbit coupling is that the latter depend crucially on a symmetry, time reversal. The action of time-reversal symmetry on electrons leads to a new kind of topological invariant in twodimensional systems [1] that takes only two possible values: if this “Z2 invariant” is even, ...

متن کامل

Pre-thermal Time Crystals and Floquet topological phases without disorder

We show that both discrete and continuous time-translation symmetry can be broken in the prethermal regime of quantum systems that eventually thermalize. We prove a theorem that states that such “time crystals” persist until times that are nearly exponentially-long in the couplings and, in driven systems, the drive frequency. After this thermalization time, the time-translational symmetry break...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016